Set Symbols

Set Symbols

A <u>set</u> is a collection of things, usually numbers. We can list each element (or "member") of a set inside curly brackets like this:

Common Symbols Used in Set Theory

Symbols save time and space when writing. Here are the most common set symbols

In the examples $C = \{1, 2, 3, 4\}$ and $D = \{3, 4, 5\}$

Symbol	Meaning	Example
{ }	Set: a collection of elements	{1,2,3,4}
ΑυΒ	Union: in A or B (or both)	C ∪ D = {1,2,3,4,5}
A ∩ B	Intersection: in both A and B	C ∩ D = {3,4}
A ⊆ B	Subset: A has some (or all) elements of B	{3,4,5} ⊆ D
A ⊂ B	Proper Subset: A has some elements of B	{3,5} ⊂ D
A ⊄ B	Not a Subset: A is not a subset of B	{1,6} ⊄ C
A ⊇ B	Superset: A has same elements as B, or more	$\{1,2,3\} \supseteq \{1,2,3\}$
A ⊃ B	Proper Superset: A has B's elements and more	$\{1,2,3,4\} \supset \{1,2,3\}$
A ⊅ B	Not a Superset: A is not a superset of B	{1,2,6} ⊅ {1,9}
Ac	Complement: elements not in A	$D^{c} = \{1, 2, 6, 7\}$ When $U = \{1, 2, 3, 4, 5, 6, 7\}$
A – B	Difference: in A but not in B	$\{1,2,3,4\} - \{3,4\} = \{1,2\}$
<i>a</i> ∈ A	Element of: <i>a</i> is in A	3 ∈ {1,2,3,4}
b∉ A	Not element of: <i>b</i> is not in A	6 ∉ {1,2,3,4}
Ø	<pre>Empty set = {}</pre>	$\{1,2\} \cap \{3,4\} = \emptyset$
U	Universal Set: set of all possible values	

Set Symbols

	(in the area of interest)	
P (A)	Power Set: all subsets of A	$P(\{1,2\}) = \{ \{\}, \{1\}, \{2\}, \\ \{1,2\} \}$
A = B	Equality: both sets have the same members	{3,4,5} = {5,3,4}
A×B	Cartesian Product (set of ordered pairs from A and B)	$\{1,2\} \times \{3,4\}$ = $\{(1,3), (1,4), (2,3), (2,4)\}$
A	Cardinality: the number of elements of set A	{3,4} = 2
I	Such that	$\{ n \mid n > 0 \} = \{1,2,3,\}$
:	Such that	$\{ n : n > 0 \} = \{1,2,3,\}$
A	For All	$\forall x>1, x^2>x$
Э	There Exists	∃ x x²>x
÷.	Therefore	a=b ∴ b=a
\mathbb{N}	Natural Numbers	{1,2,3,} or {0,1,2,3,}
\mathbb{Z}	Integers	{, -3, -2, -1, 0, 1, 2, 3,}
Q	Rational Numbers	
A	Algebraic Numbers	
R	Real Numbers	
I	Imaginary Numbers	3i
\mathbb{C}	Complex Numbers	2 + 5 i