Set Symbols

A set is a collection of things, usually numbers. We can list each element (or "member") of a set inside curly brackets like this:

Common Symbols Used in Set Theory

Symbols save time and space when writing. Here are the most common set symbols In the examples $C=\{1,2,3,4\}$ and $D=\{3,4,5\}$

Symbol	Meaning	Example
\{ \}	Set: a collection of elements	\{1,2,3,4\}
$A \cup B$	Union: in A or B (or both)	$C \cup D=\{1,2,3,4,5\}$
$A \cap B$	Intersection: in both A and B	$C \cap D=\{3,4\}$
$A \subseteq B$	Subset: A has some (or all) elements of B	$\{3,4,5\} \subseteq D$
$A \subset B$	Proper Subset: A has some elements of B	$\{3,5\} \subset D$
$A \not \subset B$	Not a Subset: A is not a subset of B	$\{1,6\} \not \subset C$
$A \supseteq B$	Superset: A has same elements as B, or more	$\{1,2,3\} \supseteq\{1,2,3\}$
$A \supset B$	Proper Superset: A has B's elements and more	$\{1,2,3,4\} \supset\{1,2,3\}$
$A \not \supset B$	Not a Superset: A is not a superset of B	$\{1,2,6\} \not \supset\{1,9\}$
A^{C}	Complement: elements not in A	When $\begin{aligned} D^{C} & =\{1,2,6,7\} \\ \mathbb{U} & =\{1,2,3,4,5,6,7\}\end{aligned}$
$A-B$	Difference: in A but not in B	$\{1,2,3,4\}-\{3,4\}=\{1,2\}$
$a \in \mathrm{~A}$	Element of: a is in A	$3 \in\{1,2,3,4\}$
$b \notin \mathrm{~A}$	Not element of: b is not in A	$6 \notin\{1,2,3,4\}$
\emptyset	Empty set $=\{ \}$	$\{1,2\} \cap\{3,4\}=\varnothing$
U	Universal Set: set of all possible values	

$\mathbf{P}(\mathrm{A})$	Power Set: all subsets of A	$\begin{gathered} P(\{1,2\})=\{\{ \},\{1\},\{2\}, \\ \{1,2\}\} \end{gathered}$
$A=B$	Equality: both sets have the same members	$\{3,4,5\}=\{5,3,4\}$
$A \times B$	Cartesian Product (set of ordered pairs from A and B)	$\begin{gathered} \{1,2\} \times\{3,4\} \\ =\{(1,3),(1,4),(2,3),(2,4)\} \end{gathered}$
$\|A\|$	Cardinality: the number of elements of set A	$\|\{3,4\}\|=2$
1	Such that	$\{n \mid n>0\}=\{1,2,3, \ldots\}$
:	Such that	$\{n: n>0\}=\{1,2,3, \ldots\}$
\forall	For All	$\forall x>1, x^{2}>x$
\exists	There Exists	$\exists x \mid x^{2}>x$
\therefore	Therefore	$a=b: b=a$
\mathbb{N}	Natural Numbers	$\{1,2,3, \ldots\}$ or $\{0,1,2,3, \ldots\}$
\mathbb{Z}	Integers	$\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
\mathbb{Q}	Rational Numbers	
A	Algebraic Numbers	
\mathbb{R}	Real Numbers	
II	Imaginary Numbers	$3 i$
C	Complex Numbers	$2+5 i$

